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Heat and mass transfer calculations in heavy liquid metal
loops under forced convection flow conditions
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Abstract

The formation of oxide scales on the structural components in a liquid metal system is considered as a viable mea-
sure in limiting the dissolution rates in the hot parts. A simple method has been devised to calculate heat and mass
transfer in such systems. The method is based on the use of heat and mass transfer coefficients which determine the
heat and mass flux from the wall into the fluid. These coefficients depend on characteristic thermo-hydraulic numbers
like the Nusselt number and the Sherwood number. This is supplemented by the application of the mass and energy
conservation laws to calculate the conditions in the bulk of the fluid. The dissolution and precipitation rates are then
coupled to the oxidation kinetics of the structural components in order to calculate the evolution of the oxide scale
thickness and the dimensional changes of the channel walls.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Liquid metal alloys have gained various applications
in technical systems during the last decades. Recently,
lead–bismuth eutectic (LBE) is foreseen as coolant and
target in accelerator driven nuclear systems (ADS). Also,
the Pb–17Li alloy is considered as a coolant and breeding
medium in future fusion reactors. One major problem in
non-isothermal liquid metal systems lies in the corrosion
of their structural materials, consisting mainly of
martensitic and austenitic stainless steels.

The formation of oxide scales on the structural com-
ponents is considered as a viable measure in limiting the
dissolution rates in the hot parts of the system, as the
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solubility of the oxides is in general much smaller than
that of the metal alloys. Oxide scales might not be stable
as for example in the Pb–17Li alloy, but there may also
be a problem in LBE loops at low oxygen concentra-
tions. Hence, the prediction of the oxide scale evolution
is of great importance. Also precipitation of oxides at
cooler parts of the system can have consequences as
there may be clogging and plugging of components hav-
ing small cross-sections. This may also affect mainte-
nance and repair of the system as in an ADS there will
be activation of steel components and there will be a
transport of activated material.

The locations of dissolution and precipitation are
mainly determined by the temperature dependence of
the solubility of the oxides or of the metal alloys if no
oxide scale is present. This means that we have dissolu-
tion in the hot parts of the system and precipitation in
the cold parts, irrespective of the nature of the dissolu-
tion process, whether it is exothermic or endothermic.
ed.
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In a previous paper [1] some information on a
recently developed simple model for the calculation of
the mass transfer in a liquid metal loop was given. In this
paper we are going to discuss this model in more detail
and extend it also to heat transfer. We will also establish
the link to the oxidation kinetics in order to calculate
the evolution of the oxide scales on the structural
components.
2. Theory

2.1. Mass transfer

In general, one has forced convection flow conditions
in liquid metal loops, either laminar or turbulent flow. If
one wants to calculate the transport of ions, atoms, or
molecules present in the liquid metal in a certain concen-
tration ci (with i denoting the solute), one can use the
convective diffusion equation (cp. Ref. [2]):

oci
ot

þ ð~trÞci ¼ rðDirciÞ; ð1Þ

where is~t the velocity of the liquid metal and Di the dif-
fusivity of solute i in the liquid metal. The convective
diffusion equation is given in its most general form,
assuming that the concentration can depend on the axial
position x in the loop and on transversal coordinates
and that there can be a transient phase.

Such a procedure has been adopted by Zhang and Li,
which have published a series of papers [2–5]. But one
can also take a different route for the solution of the
problem. Namely, one can take profit of the principles
of convective mass transfer, which stipulate that under
forced convection flow conditions the mass flux is deter-
mined by a dimensionless characteristic flow parameter,
the so-called Sherwood number; and we can take profit
(if needed) of the analogy between heat and mass trans-
fer. Thus, the mass flux of the solute i from the channel
wall into the bulk of the fluid is given by the following
equation (cp. Ref. [13]):

ji ¼ K fl
i � ðcwi � cbi Þ; ð2Þ

where K fl
i is the mass transfer coefficient for the solute i,

cwi the concentration of the solute i at the wall and cbi is
the concentration in the bulk of the fluid.

The direction of the mass flux depends on the ratio of
the two concentration values. If cwi is higher than cbi then
the mass flux is directed from the wall into the fluid; if cwi
is smaller than cbi then the mass flux is directed from the
fluid to the wall.

In the following we make implicitly use of the fact
that the solutions of the thermo hydraulic equations
depend on characteristic non-dimensional quantities,
which is finally a consequence of Buckingham�s P-
theorem [6].
The mass transfer coefficient K fl
i is determined by the

Sherwood number Sh in the following way:

K fl
i ¼ Di

dhyd

� Sh; ð3Þ

where dhyd is the hydraulic diameter.
Bringing the convective diffusion Eq. (1) into a non-

dimensional form, one can show that under forced con-
vection flow conditions its solutions depend on the
Reynolds number Re and on the Schmidt number Sc.
Thus, the Sherwood number Sh, which is the character-
istic number for the non-dimensional mass flux must also
depend on the Reynolds number and on the Schmidt
number. Therefore we have the following functional
relationship:

Sh ¼ a � Rea � Scb. ð4Þ

The parameters a and a, b must be determined exper-
imentally depending on the flow regime.

Re ¼ ufl � dhyd

tfl
; Sc ¼ tfl

Di

; ð5Þ

where tfl is the kinematic viscosity of the fluid and ufl the
flow velocity.

It remains to calculate the solute concentration in the
bulk of the fluid cbi along the whole loop. This is done
with the help of the mass conservation law. In this
way we have derived the following differential equation:

ocbi ðt; xÞ
ot

þ ufl �
ocbi ðt; xÞ

ox
¼ U ch

Ach

� jiðt; xÞ; ð6Þ

where Uch is the circumference of the flow channel, Ach

the cross-section of the flow channel and ufl the flow
velocity in the coolant channel.

The axial position x in the loop is to be understood as
a length of flow path, as the different axial sections of the
loop are added in a scalar way irrespective of their ori-
entation in space.

There we have assumed that the bulk concentration
does not depend on transverse coordinates, as the con-
centration cbi in the liquid metal is practically uniform,
with appreciable concentration differences appearing
only in a very thin layer at the wall. This thin layer
was neglected in the derivation of Eq. (6).

We have also to fix the boundary conditions. In a
closed loop we have the following periodic boundary
condition:

cbi ðt; 0Þ ¼ cbi ðt; LÞ; ð7Þ

where L is the total length of the loop. In a pipe flow
situation we would have in most cases the following
condition at the inlet:

cbi ðt; 0Þ ¼ c0i ðtÞ; ð8Þ
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where x = 0 is the axial position of the inlet. If there is a
magnetic trap at some axial location xm.tr., which is able
to remove the solute i quantitatively we would also have

cbi ðt; xm.tr.Þ ¼ 0. ð9Þ

The value which we have to take for cwi depends on
the nature of the interface. If the solute results from
an interface reaction with a rate constant ks we have a
two-step mechanism and the overall mass transfer coef-
ficient Kt is given by [7]

K t ¼
ks � K fl

i

ks þ K fl
i

. ð10Þ

When ks � Ki then Kt ! K fl
i . We have also assumed

that there is no diffusion surface layer, which the solute i
must pass. Otherwise, the overall mass transfer coeffi-
cient is given by

K t ¼
K fl

i � Ds.l.
i =d

K fl
i þ Ds.f.

i =d
; ð11Þ

where Ds.l.
i is the diffusion coefficient of the species i in

the surface layer and d the thickness of the surface layer.
Using the overall mass transfer coefficient we have the
following equation:

ji ¼ K t � ðcsi � cbi Þ; ð12Þ

with csi being the solubility of the species i in the liquid
metal.s

2.1.1. Calculation of dissolution and precipitation rates

We have now all the necessary elements for the calcu-
lation of the dissolution and the precipitation rates, one
of the main aims of this work. We are mainly concerned
with stainless steel components and in the foregoing we
will derive formulas relevant for this kind of material. If
we have an oxide scale consisting of magnetite the disso-
lution and precipitation rates are given as

box ¼ �jFe �
3 �MFe þ 4 �MO

3 �MFe

=qox; ð13Þ

where jFe is the iron flux, Mi the atomic weight of the
species i and qox the specific density of the magnetite.

If we have an iron–chromium spinel, the ratio of the
atomic weights in Eq. (13) has to be modified accord-
ingly. We have adopted the convention that in case of
dissolution the rate box is negative and in case of precip-
itation positive. If there is no oxide scale present, the dis-
solution and precipitation rates depend a bit on the
behavior of all the alloying components. If fFe measures
the mass fraction of all the alloying elements of the clad-
ding dissolved or precipitated which can be attributed to
iron, we get:

bme ¼ �jFe �
1

qss � fFe
; ð14Þ
where qss is specific density of stainless steel. It should be
noted that in both cases the calculated iron flux which
appears in Eqs. (13) and (14) is very different, as the sol-
ubility can differ by order of magnitudes.

2.1.2. Evolution of the oxide scale and variation

of the oxygen concentration along the loop

If the concentration of oxygen in the liquid metal is
above a certain limiting value, oxide scales are formed
on the stainless steel components. We assume that in
the absence of dissolution the increase of the oxide scale
can be described by some function r(T,cO) for the oxida-
tion rate, then we can establish the following balance
equation for the oxide scale:

ddoxðtÞ
dt

¼ rðT ; cOÞ þ box; ð15Þ

where cO is the oxygen concentration in the liquid metal.
If oxide scale formation is determined by a parabolic

growth law, then we can write

ddoxðtÞ
dt

¼ aoxðT ; cOÞ
doxðtÞ

þ box; ð16Þ

where aox is the parabolic oxidation rate parameter.
A similar equation has originally been used by Ted-

mon [8] for high-temperature oxidation with simulta-
neous volatilization of Cr2O3. In the high temperature
region we have dissolution, box is negative and the oxide
scale thickness tends to a limiting value, irrespective of
the initial oxide scale thickness:

dequiox ¼ �aoxðT ; cOÞ
box

. ð17Þ

If the initial oxide scale thickness is below the equilib-
rium value, the oxide scale will grow; if the initial value
is above, the oxide scale will decrease. For the equilib-
rium value of the oxide scale thickness scale formation
and dissolution would be in dynamic equilibrium with
both processes still continuing. That means the oxide
scale would move inwards at a constant rate given by
box.

In case of precipitation the oxide scale would finally
grow linearly:

ddoxðtÞ
dt

! box. ð18Þ

In a time increment Dt the oxide scale thickness will
change by Ddox and the wall inner radius will change by:

Drchi ¼ � rðT ; cOÞ
U

þ box

� �
� Dt; ð19Þ

where U is the Pilling–Bedworth ratio. The sign conven-
tion is that in case of dissolution box is negative and in
case of precipitation it is positive. If no oxide scale is
present on the inner clad wall, we have:

Drchi ¼ �bme � Dt. ð20Þ
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Eqs. (15) and (16) determine also the oxygen flux jO
from the wall into the liquid metal:

jO ¼ �ðrðcO; T Þ þ boxÞ �
4 �MO

3 �MFe þ 4 �MO

� qox. ð21Þ

We can now calculate the change of the oxygen con-
centration along the loop in the same way as has been
done for the iron concentration:

ocbOðt; xÞ
ot

þ ufl � oc
b
Oðt; xÞ
ox

¼ U ch

Ach

� jOðt; xÞ; ð22Þ

where cbO is the oxygen concentration in the bulk of the
fluid. If there is oxygen control at some axial location of
the loop, the respective oxygen concentration figures as
a boundary value at this axial location.

2.2. Heat transfer

If the temperature distribution in a liquid metal sys-
tem is axially non-homogeneous there will also occur
heat transfer beside that of solute elements. Liquid metal
systems had been constructed in the past especially for
this purpose [9], but in loops like CORRIDA and
PICOLO [10,11] this aspect is of minor importance.
The modeling of heat transfer follows the same path
as that for mass transfer. The heat flux q from the wall
into the fluid can be given by

q ¼ Nu � kfl
dhyd

� ðT w � T flÞ; ð23Þ

where kfl is the heat conductivity of the fluid.
For liquid metals the Nusselt number Nu is in general

represented as a function of the Peclet number Pe, for
example by the following correlation recommended by
the Liquid-Metals Handbook [12]:

Nu ¼ 7:0þ 0:025 � Pe0:8 � Pe ¼ Re � Pr; ð24Þ

where Pr is the Prandtl number. The change of the liquid
metal enthalpy is calculated with the help of the energy
conservation law:

oðqfl � cflp � T flÞ
ot

þ ufl �
oðqfl � cflp � T flÞ

ox
¼ U ch

Ach

� qðt; xÞ; ð25Þ

where qfl is the liquid metal density and cflp the liquid
metal heat capacity.
3. Results of calculations and discussion

The newly developed model has been incorporated in
the computer code MATLIM, where the relevant differ-
ential equations are solved with the help of finite differ-
ence techniques by dividing the whole loop into a certain
number of axial meshes. In the actual version of the code
a value of 1000 axial meshes is used. But this value can
easily be increased if there is a need. In this way multi-
modular loops can easily be treated, as specific values
for the relevant parameters can be assigned for each
axial mesh. The calculations were done for the COR-
RIDA [10] and PICOLO [11] loops. The main character-
istics of these loops are described elsewhere and shall
therefore not be mentioned in this paper.

There are mainly three different types of physical
properties and parameters, which determine material
behavior in a liquid metal system. The first group con-
cerns the thermo-hydraulic data of the system like the
flow velocity and the hydraulic diameter but also the
temperature distribution along the system. The second
group concerns material data like viscosity of the liquid
metal, diffusivity and solubility of the solutes. The third
group encompasses properties of the wall materials itself
like oxidation rates. The dependence on the thermo-
hydraulic parameters is evident from Eqs. (3) and (4)
and will be discussed in the following for turbulent
and laminar flow conditions.

There are a number of correlations for the mass
transfer coefficient obtained under fully developed tur-
bulent pipe flow. Our main assumption is that they
can also be applied for liquid metal loops. Three of these
correlations were investigated and discussed in Ref. [13].
These are the correlation of Berger and Hau [14], that of
Silverman [15], and that of Harriott and Hamilton [16].
The range of validity for the Berger and Hau correlation
is for example given in Ref. [13] as follows:

8 � 103 6 Re 6 2 � 105; 1000 6 Sc 6 6000. ð26Þ

All these three correlations give similar values for the
mass transfer coefficient. It is therefore sufficient for us
to use only one of them, namely that of Silverman [15]:

KSilv ¼ 0:0177 � u0:875fl � D0:704
Fe =ðd0:125

hyd � t0:567fl Þ. ð27Þ

In case of laminar flow we can make use of the anal-
ogy between heat and mass transfer. There is a lot of
information on the heat transfer in pipe flow (laminar
and turbulent, inlet flow or fully developed flow) in
Ref. [17], which can be applied to mass transfer by
replacing the Nusselt number by the Sherwood number
and the Prandtl number by the Schmidt number. The
model incorporated in the code MATLIM is flexible
enough, as in each axial mesh of the loop we can specify
the value of the mass transfer coefficient. We are not
going to discuss this in all details but give here only
the Sherwood number for small values of the parameter
Re Æ Sc Æ dhyd/x (x = axial distance from the inlet) [17]:

In case of a full circular cross-section:

Shla ¼ 3:66. ð28aÞ

In case of an annular cross-section [17]:

Shla ¼ 3:66þ ð4� 0:102=ðd i=do þ 0:02ÞÞðd i=doÞ0:04;
ð28bÞ
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where di, do are inner, outer diameter of the flow
channel.

There we have made use of the analogy between heat
and mass transfer, that means replaced the Nusselt num-
ber by the Sherwood number.

We have applied the Nusselt number correlation
given in [17] for fixed values of the wall temperature
and not that for fixed values of the heat flux, as these
values are to be transferred for a situation with fixed
values for the concentration of the solutes at the wall. It
should be noted that in case of fully developed laminar
flow the mass transfer coefficient does not depend on
the flow velocity and increases linearly with the iron
diffusivity.

The flow in pipes is laminar up to a Reynolds number
of 2300 and it becomes fully turbulent at a Reynolds
number of 10000. In between we have a transition
regime. In order to describe this transition regime we fol-
low the procedure proposed in [17], which is based on a
linear interpolation between the Nusselt numbers in the
laminar and in the turbulent regime. Defining the
parameter c as

c ¼ Re� 2300

104 � 2300
ð29Þ

we obtain the Sherwood number in the transition region
as follows:

Shtr ¼ ð1� cÞ � Shlað2300Þ þ c � Shturbð104Þ. ð30Þ

Shturb is the Sherwood number in the fully turbulent
region.

Solubility data for liquid lead–bismuth eutectic
(LBE) are given in Ref. [2]. In case of the pure metal
without an oxide scale the solubility of iron in LBE is
accordingly:

csFeðT Þ ¼ 106:01�4380=T ðin wppmÞ. ð31Þ

If there is an Fe3O4 oxide scale present, the solubility
is according to Ref. [2]:

csFeðT ; cOÞ ¼ c�1:33
O � 1011:35�12844=T ðin wppmÞ; ð32Þ

where T is the temperature in K and cO the oxygen con-
centration in LBE.

In Ref. [2] are also given solubility data for Ni, Cr and
O. It should be noted that the data for oxygen are dif-
ferent from those given in [18] and also those in [19].
To the knowledge of these authors none of these solubi-
lity correlations have been validated experimentally.

As long as there is an oxide scale present on the
metallic surface, Eq. (32) is to be applied irrespective
of the fact that, below a limiting value of the oxygen
concentration, correlation (31) provides then lower
values.

For Pb–17Li, the following correlation for the iron
solubility was given in Refs. [13,20,21]:
csFeðT Þ ¼ 102:524�655:07=T ðin wppmÞ. ð33Þ

The solubility data in Ref. [22] on the other hand
would give values lower by about a factor of 1000.

The diffusivity of single-atom solutes in liquid metals
can be calculated with the help of the Sutherland–
Einstein equation [2]:

DiðT Þ ¼
k � T

4 � p � gflðT Þ � ri
; ð34Þ

where gfl is the dynamic viscosity of the fluid and ri the
atomic radius of the solute.

With an atomic radius of 1.13 · 10�40 m for iron [13]
and a dynamic viscosity of 1.23 · 10�3 Pas for LBE at
550 �C, one obtains for the diffusivity of iron in LBE
the following value:

DFeð550 �CÞ ¼ 6:5� 10�9 m2=s. ð35Þ

A similar value has been obtained with the Suther-
land-Einstein equation for the iron diffusivity in Pb–
17Li at 500 �C [13]. This theoretical value was compared
to values of the diffusivity obtained from experiments
with a rotating cylinder, which are smaller by a factor
of about 10�5.

But one should be cautious in applying Eq. (34) for
solutes in liquid metals, as they exist in form of solvated
metal clusters. Thus, one should use an effective cluster
radius in Eq. (34), which can be much larger than the
�real� atomic radius. But it seems doubtful whether a fac-
tor of 10�5 can be explained in this way. The same prob-
lem was also discussed in [25]. There, an iron solubility
which is lower by a factor of 1000 was favored. This
would allow the use of a much higher iron diffusivity.

It seems that also in LBE the iron diffusivity obtained
from the Sutherland-Einstein equation gives values for
the dissolution rate, which are too high by some orders
of magnitude (see below). For the time being we do not
know whether this is only due to the iron diffusivity or
may be also to the iron solubility.

In general, diffusion is a slow process compared to
chemical reactions. Therefore we assume that the rate
constant of the interface reaction,

Fe3O4 þ 4Pb ! 3Feþ 4PbO ð36Þ

is much higher than the mass transfer coefficient in the
liquid metal. Thus, we have:

cwFe ¼ csFe; K t ¼ K fl
Fe ð37Þ

with cwFe the concentration of Fe at the wall and csFe the
solubility of Fe in the liquid metal.

This view is generally accepted in the literature (see
for example Refs. [2,13]). In case of metallic surfaces,
as in the PICOLO loop, we also assume that there is
no diffusion layer at the surface of the wall. This condi-
tion can be removed, if in the future we can get experi-
mental evidence for such surface layers. According to
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Ref. [21] porous ferritic layers are observed on the sur-
face of austenitic steels which are characterized by a
depletion of nickel, manganese and chromium. On the
other hand, ferritic steels, show no such surface layer
[21]. The presence of porous surface layers could eventu-
ally be not observed by metallography, as they may be
very friable. They would in any case necessitate the use
of a much lower iron diffusivity in the liquid metal than
in reality, if they are not included in the model.

The main features of the two loops for which calcu-
lations have been done are listed in Table 1.

In Fig. 1 we have plotted the axial temperature distri-
butions along the loop. In Figs. 2–6 results of calcula-
tions for the CORRIDA loop are seen.

Fig. 2 shows the axial distribution of the iron flux
from the wall into the liquid metal and the iron concen-
tration in the bulk of the fluid for a value of the iron
diffusivity of 2 · 10�10 m2/s. The latter parameter influ-
ences also the iron flux, as for constant wall temperature
the iron flux decreases with increasing iron concentra-
tion in the bulk.
Table 1
Main characteristics of the CORRIDA and PICOLO loops

Loop specification CORRIDA PICOLO

Coolant LBE Pb–17Li
Temp. cold leg (�C) 400 350
Temp. hot leg (�C) 550 480–550
Hydr. diameter (mm) 16 8
Total length (m) 35.8 10.6
Flow velocity (cm/s) 200 30
Oxygen content (wppm) 0.01 <10�5

500

600

700

800

900

Te
m

pe
ra

tu
re

 (K
)

0.0 0.2 0.4 0.6 0.8 1.0
Norm. axial position

CORRIDA

PICOLO

Fig. 1. Axial temperature distributions in CORRIDA and
PICOLO loops.

Norm. axial position
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Fig. 3. Axial distributions of the dissolution/precipitation rates
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In Fig. 3, the axial distribution of the dissolution/pre-
cipitation rate in lm/y is plotted. For the time being we
have no experimental values of the dissolution rate, but
we expect it to range between 1 and 10 lm/y. It is known
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that the dissolution rates can be rather high for metallic
surfaces.. A value of 0.37 mm/y for the steel DIN 1.4914
in flowing Pb–17Li is given in Ref. [23]. For oxide scales
the dissolution rates should be lower by at least one or
two orders of magnitude. For the selected value of the
iron diffusivity we have obtained a maximum dissolution
rate of about 6 lm/y with a value of the oxygen concen-
tration in the liquid metal of 0.05 wppm.

Fig. 4 shows a similar study on the maximum disso-
lution rate in the CORRIDA loop with a variation of
the iron diffusivity and the oxygen concentration in the
liquid metal. The dissolution rate becomes rather high
for oxygen concentrations below about 0.01 wppm,
and in this range the sensitivity on the iron diffusivity
is rather obvious. For the time being we have no exper-
imental data for the dissolution rate of magnetite. But
we expect that they are relatively small (<10 lm/y) and
this would then mean that the iron diffusivity as obtained
from the Sutherland-Einstein equation is probably
higher by about two orders of magnitude.

Values of the equilibrium oxide scale thickness at
550 �C for the martensitic steel DIN 1.4910 in depen-
dence on the dissolution rate are seen in Fig. 5 and in
Fig. 6 the evolution of the oxide scale thickness for a
dissolution rate of 10 lm/y. About 20000 h of opera-
tional time are needed to reach more than 95% of the
equilibrium value of the oxide scale thickness. We have
assumed that the unperturbed oxidation is parabolic.
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The dissolution/precipitation rates in the PICOLO
loop for iron diffusivity values of 1 · 10�13 and 2 ·
10�13 m2/s are seen in Fig. 7.

The maximum dissolution rate for these diffusivity
values is about 70 and 120 lm/y, respectively, whereas
a value of about 100 lm/y has been observed in long
term corrosion tests in the PICOLO loop [24]. Thus,
the finding of Ref. [13] that the effective iron diffusivity
in Pb–17Li is by about five orders of magnitude smaller
than given by the Sutherland-Einstein equation is qual-
itatively confirmed. The calculations were based on the
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Fig. 7. Axial distributions of the dissolution/precipitation rates
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use of the iron solubilities given in [20,21]. With values
of the iron solubility as recommended in [22,23] one
would have to take much higher values for the iron
diffusivity in order to obtain reasonable values for the
dissolution rates. One should also note that the maxi-
mum dissolution rate does not only depend on the tem-
perature in the hot leg but also on the temperature
distribution along the whole loop. A comparative study
using a modified temperature distribution from the
CORRIDA loop with a temperature of 480 �C in the
hot leg yielded maximum dissolution rates, which were
lower by about 40%.
4. Conclusion

A kinetic model for the calculation of heat and mass
transfer in liquid metal systems under forced convection
flow conditions has been developed. It is based on the
use of the relevant characteristic thermo-hydraulic num-
bers, which determine mass and heat flux from the wall
into the fluid. This is supplemented by the application of
the mass and energy conservation laws to calculate the
conditions in the bulk of the fluid. The oxidation kinet-
ics of the structural components is then combined with
the dissolution/precipitation rates for the determination
of their geometrical changes if the oxygen content in the
liquid metal is high enough.

For metallic surfaces the dissolution rates can be con-
siderable. In this case a lot of experimental data are
available. If oxide scales are present the dissolution rates
should be very much smaller. No experimental data for
dissolution rates in LBE loops are for the time being
available. Besides the thermo-hydraulic parameters like
flow velocity and hydraulic diameter, iron diffusivity
and solubility are of greatest importance. It seems that
the effective iron diffusivity is much smaller than given
by the Sutherland-Einstein equation.
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